G Crouzet ${ }^{\circ}$
Control Relays

- Relays for Control \& Monitoring
- DIN Rail Mount
- 24 mm \& 48mm Wide Units
- Wide range of options

CONTENTS

Control Relays

EN Liquid Level	80
FN Liquid Level	81
FN and Accessories	82
MCI Current Control	83
EI Current Control	84
EUL / EUH Voltage Control	85
EUS / EUSF Voltage Control	86
F3US / F3USN 3 Phase Voltage	87
HDI / HDU Current / Voltage Digital	88
EWS 3 Phase Monitor	89
FW 3 Phase Monitor	90
FWA 3 Phase Monitor	91
ETM Thermistor Relay	92
FRL Underspeed Monitor	93
FFP Motor Load Monitor	94
Dimensions	95

EN - LIQUID LEVEL CONTROL

- Automatic level control of conductive liquids
- Sensitivity adjustable from $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ via front face dial
- Fill (UP)/empty (DOWN) function selectable by front face switch
- AC current on probes
- Slim 22.5mm housing

OPERATING PRINCIPLE

Control of maximum and/or minimum levels of conductive liquids (tap water, sea water, waste water, chemical solutions, coffee etc).
The principle is based on measurement of the apparent resistance of the liquid between two submerged probes. When this value is lower than the preset threshold on the unit front face, the output relay changes state. To avoid electrolytic phenomena, an AC current runs across the probes.
Applications found in environmental, chemical industries and food technology etc.

Regulation of two levels: Minimum / Maximum

The output relay changes state when the level of liquid reaches the maximum electrode, with the minimum electrode submerged. It returns to its initial state when the minimum probe is no longer in contact with the liquid.

Note : If the power break ΔT lasts for 0.5 seconds or more, the relay re-energises instantly if in "UP" mode and is de-energised if in "DOWN" mode.

For probes see page 82

WIRING AND APPLICATIONS

GENERAL SPECIFICATION

Supply voltage Un	$\begin{aligned} & 230 \mathrm{~V}, 110 \mathrm{~V}, 48 \mathrm{~V}, \\ & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \end{aligned}$
Operating range	0.85 to $1.15 \times \mathrm{Un}$ *
Maximum power consumption	3 VA
Adjustable sensitivity	$5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$
Measurement accuracy (at maximum sensitivity)	0-+30\%
Electrode voltage (maximum)	$24 \mathrm{~V} \sim(50 / 60 \mathrm{~Hz})$
Electrode current (maximum)	$1 \mathrm{~mA}(50 / 60 \mathrm{~Hz})$
Maximum cable capacity	10 nF
Response time high level	300 ms
low level	500 ms
Output relay (according to AC1, resistive load)	1 AgCdO changeover $8 \mathrm{~A} \sim \max$.
Galvanic isolation via transformer ($4 \mathrm{kV}, 8 \mathrm{~mm}$ creepage distance)	Class II VDE 0551
Isolation of contacts and electrodes from power supply	2.5 kV ~
Temperature use	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
stored	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight	140 g

Note

The probe cable (maximum 100 metres) does not have to be screened, but avoid mounting it in parallel with the power supply cables. A screened cable can be used, with the screening connected to the common.
*Voltage limited to Un $+10 \%$ if other products are mounted adjacently on the same DIN rail.

- Automatic level control of conductive liquids
- High or low level alarm selectable
- Sensitivity adjustable from $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ via front face dial
- Fill (UP)/empty (DOWN) function selectable by front face switch
- Compact 45 mm wide housing

GENERAL SPECIFICATION	
POWER SUPPLY	
Supply voltage Un	230, 120, 48 and $24 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ galvanic isolation via transformer
Supply tolerance	0.85 to 1.15 Un except $120 \mathrm{~V} \sim: 0.85$ to 1.1 Un
Power nominal	3 VA at Un
maximum	4 VA at Un + 15 \%
Immunity from micro power cuts	10 ms
Delay on pick-up	T1 = approx. 2 s
Response time on power-up	T4 $=500 \mathrm{~ms}$
Insulation coordination	Category III, degree of pollution 2 conforming to IEC 664.1/ VDE0110: 4 KV/2
CONTROL CIRCUIT	
Sensitivity range $\frac{\text { FN }}{\text { FN LS }}$	$5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$
	250Ω to $5 \mathrm{k} \Omega$
Display accuracy	$\pm 30 \%$ with maximum sensitivity
Electrode voltage	$15 \mathrm{~V} \sim(50 . .60 \mathrm{~Hz})$
Electrode current	1 mA
Response time on probe immersion	$\mathrm{T} 2=400 \mathrm{~ms}$
on emersion	T3 $=700 \mathrm{~ms}$
OUTPUT CIRCUIT	
Output	2 AgCdO changeover
Breaking capacity	2000 VA 80 W
Maximum breaking current	$8 \mathrm{~A} \sim 18 \mathrm{c}$
Minimum breaking current	$100 \mathrm{~mA} \sim 100 \mathrm{~mA}$...
Maximum breaking voltage	$250 \mathrm{~V} \sim \quad 250 \mathrm{~V} \ldots$
Mechanical life	2×10^{6} operations
Electrical life AC12	2000 VA - 105 operations
AC15	$\operatorname{Cos} \varphi=0.3-6000$ operations
DC13	L/R $=300 \mathrm{~ms}-6000$ operations
GENERAL CHARACTERISTICS	
Casing material	Self-extinguishing
Terminal capacity	$2 \times 1.5 \mathrm{~mm}^{2}$ with ferrule $2 \times 2.5 \mathrm{~mm}^{2}$ without ferrule
Temperature limits Use Stored	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & \text { (conforming to IEC 68.1.14) } \end{aligned}$
	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (conforming to IEC 68.1.1/2)
Relitive humidity	93\% (+2\%;-3\%) without condensation
Weight	280 g approximately

Note:

The probe cable does not have to be screened, but avoid mounting it close to the power supply cables. To conform to the EMC directive (89/336/EEC), a screened cable must be used, with the screening connected to the common and the earth.
For probes see page 82

OPERATING PRINCIPLE

Control of the level of a conductive liquid at specific points (high and low levels) with an alarm for a level which is abnormally high or low.
The principle is based on measurement of the apparent resistance of the liquid between submerged probes. When this value is lower than the preset threshold on the unit front face, the output relay R1 and/or the alarm relay R2 change state.
To avoid electrolytic phenomena, an AC current runs across the probes.

Adjusting sensitivity

Set the sensitivity so that the relay will change state when the probes are in contact with the liquid. Then check that the relay returns to its initial position as soon as the probes emerge.
In certain applications, fine-tuning the sensitivity prevents inappropriate detection, such as the presence of foam or bubbles on the surface or the occurrence of leakage impedance between probes (extended line capacity, humidity, etc).

Note:

Latching of the alarm relay R2 in de-energised state if a fault occurs can be programmed via a switch on the underside of the unit (only when the unit is switched off). To reset alarm relay R2, cut the power, as long as the levels are reset.

Programming

The FN level controller can be programmed using 3 switches on the lower panel:

	1	0
Memory	OFF	ON
Alarm	Low	High
Function	Emptying	Filling

Note : Memory, Alarm and Function must only be selected when the unit is switched off.

Type	Voltage
FN.230A	230Vac
FN.120A	120Vac
FN.48A	48Vac
FN.24A	24 Vac
FN.230A (low sens)	230 Vac

ORDERING GUIDE

FN - LIQUID LEVEL CONTROL WITH ALARM continued

OPERATING PRINCIPLE CONTINUED

Filling control with low alarm

On power-up, probe AI. is submerged, relays R1 and R2 are energised and the pump is ON : filling starts, the LED for relay R1 is lit. When the level reaches the Max probe, relay R1 de-energises and the pump is OFF : filling stops, the LED for relay R1 goes off. Relay R1 re-energises when the Min probe emerges. In the event of a fault (level continues to fall) probe AI. emerges, relay R2 de-energises and the alarm is triggered : the LED for relay R2 is lit. This fault can be stored.

Filling control with high alarm

On power-up, the level in the tank is low, relays R1 and R2 are energised and the pump is ON : filling starts, the LED for relay R1 is lit. When the level reaches the Max probe, relay R1 de-energises and the pump is OFF : filling stops, the relay LED goes off. If, in the event of a fault, the level continues to rise and reaches probe Al., relay R2 de-energises and the alarm is triggered : the LED for relay R2 is lit. This fault can be stored.

Note: T1 : Delay on pick-up
T2 : Response time on probe immersion

Emptying control with low alarm

On power-up, probes Min, Max and AI. are submerged, relays R1 and R2 are energised and the pump is ON : emptying starts, the LED for relay R1 is lit. When the Min probe emerges, relay R1 de-energises and the pump is OFF : emptying stops, the LED for relay R1 goes off. If, in the event of a fault, the level continues to fall and probe Al. emerges, relay R2 de-energises and the alarm is triggered : the LED for relay R2 is lit. This fault can be stored.

Emptying control with high alarm

On power-up, probes Min, Max are submerged and probe AI. is above the level of the liquid. Relays R1 and R2 are energised and the pump is ON : emptying starts, the LED for relay R1 is lit. When the Min probe emerges, relay R1 de-energises and the pump is OFF : emptying stops, the LED for relay R1 goes off. If, in the event of a fault, the level continues to rise and reaches probe Al., relay R2 de-energises and the alarm is triggered : the LED for relay R2 is lit. This fault can be stored.

T3: Response time on probe immersion T4: Response time on power-down

LIQUID LEVEL CONTROL ACCESSORIES

S7 (79 696 043)

- Protected electrode for mounting by suspension
- Protective shell : nylon 6/6 (S4)

S5 (79 696006)

- Suitable for high pressures and high temperatures. For use up to $350^{\circ} \mathrm{C}$ and 15 $\mathrm{kg} / \mathrm{cm}^{2}$
- Metal parts of stainless
steel, isolated by
ceramic.
- 3/8' BSP mounting
thread.

NB. With all of the above controls the probe cable should not exceed 100 m . This does not need to be screened but should not run next to power cables. If it is screened the screen needs to be connected to common ground. Maximum cable capacitances are: low sensitivity 100 nF , standard sensitivity 10 nF , high sensitivity 1 nF .

MCI AC CURRENT CONTROL

- Monitors ac currents
- Measures from 1A to 20A directly
- Built-in CT for ease of installation
- Slim $\mathbf{1 7 . 5 m m}$ housing
- Wide supply voltage $\mathbf{2 4 V a c} / \mathrm{dc}, \mathbf{1 1 0 - 2 4 0 V a c}$
- $1 \times \mathrm{N} / \mathrm{O}$ output relay

GENERAL SPECIFICATION

Supply voltage Un	$24 \mathrm{~V} \sim \ldots$ / 110 to 240 V ~
Frequency	$50 / 60 \mathrm{~Hz}$
Supply tolerance	$\begin{aligned} & \pm 15 \% \text { for } \\ & 24 \mathrm{~V} \text {.". } \sim \\ & -15 \% \text { to } 10 \% \\ & \text { from } 110 \mathrm{~V} \text { to } 240 \mathrm{~V} \sim \end{aligned}$
Maximum consumption	$\begin{aligned} & 1 \mathrm{VA} \text { at } 24 \mathrm{~V} \tilde{0} \\ & 9 \mathrm{VA} \text { at } 240 \mathrm{~V} \sim \\ & 0.6 \mathrm{~W} \text { at } 24 \mathrm{~V}= \end{aligned}$
Temperature-dependent drift	$0.06 \% /{ }^{\circ} \mathrm{C}$
Repetition accuracy	0.45\%
Relative humidity	95\% RH
Input	
Measured current range	from 1 A to 20 A sinusoidal
Frequency range of measured current	from 30 Hz to 400 Hz
Display accuracy	$\pm 10 \%$ of the max. scale value
Switching hysteresis	15% of the value displayed
Maximum permanent current	40 A
Accidental overload current	$100 \mathrm{~A} / 3 \mathrm{~s}$
Response time to sensing T2	$400 \mathrm{~ms} \pm 50 \%$
Response time to sensing T3	$120 \mathrm{~ms} \pm 50 \%$
Delay on pick-up T1	500 ms maximum

Notes:
The graduated set-point scale on the front relates to sinusoidal or delta current measurement. The MCl can measure non-sinusoidal currents, for example currents subject to phase control. In this case, the display may be affected by an error coefficient which is a function of the tripping angle of the phase controller (form factor).

Output	One normally open contact.
Breaking capacity	1250 VA
Maximum breaking current	$5 \mathrm{~A} \sim-\quad 5 \mathrm{~A}$.-
Minimum breaking current	$10 \mathrm{~mA} \sim$ - 10 mA
Maximum breaking voltage	$250 \mathrm{~V} \sim-\quad 250 \mathrm{~V}$...
Electrical life	10^{5} operations at 1250 VA resistive
Mechanical life	30×106 operations
Type of contacts	Agcd0
Terminal capacity	$2 \times 1.5 \mathrm{~mm}^{2}$ with ferrule or $2 \times 2.5 \mathrm{~mm}^{2}$ without ferrule
Temperature limits Use	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Stored	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight	80 g
Dielectric strength	$\begin{aligned} & 2.5 \mathrm{KV} / 1 \mathrm{minute} / \\ & 1 \mathrm{~mA} / 50 \mathrm{~Hz} \\ & \text { (IEC 255.5) } \end{aligned}$

OPERATING PRINCIPLE

The relay contact (11 and 14) closes if the current is greater than the threshold.
The relay contact (11 and 14) opens if the current is less than 15 \% (hysteresis) of the threshold.

Note :

Delay on pick-up (T1) 500 ms maximum. Response time to sensing (T2) $400 \mathrm{~ms} \pm 50 \%$.
Response time to turn-off (T3) $120 \mathrm{~ms} \pm 50 \%$.

EI CURRENT CONTROL

- $\mathrm{EIL}=5 \mathrm{~mA}$ to $500 \mathrm{~mA} \mathrm{ac} / \mathrm{dc}$ EIH $=100 \mathrm{~mA}$ to $10 \mathrm{~A} \mathrm{ac} / \mathrm{dc}$ EIT = 10 to 100A (with CT) ac only
- Selectable latching or non-latching output relay
- Up to 20s adjustable power on delay to allow for startup surges
- Under or over current selectable
- Separate dial for setting of threshold and hysteresis

OPERATING PRINCIPLE

AC/DC control without memory.
When the value of the controlled current, either AC or DC, reaches the threshold displayed on the front face, the output relay changes state at the end of time delay T 1 .
It returns instantly to the initial state when the current drops below the hysteresis threshold, or when the power supply is disconnected.

AC/DC control with memory.

The output relay changes state at the end of time delay T1 and remains latched in this position. To reset the memory function the auxiliary supply must be disconnected.

Over-current function (UPPER).

The time delay on energisation T2 prevents current peaks due to motor starting. The delay on upward crossing of threshold T1 provides immunity to transients and other interference, thereby preventing spurious triggering of the output relay. Under-current function (UNDER).
The time delay on energisation T2 prevents the occurrence of current troughs. The delay on downward crossing of threshold T1 provides immunity to random dips, thereby preventing spurious triggering of the output relay.
Note: In underload function, the absolute value of the hysteresis cannot be greater than the measurement range maximum.

During the time delays, the yellow LED flashes at a frequency of 1 Hz .

GENERAL SPECIFICATION

Type		EIL		EIH			IT
Supply voltage Un	230 V, 110 V, 48 V, 24 Vac 50 / 60 Hz (galvanic isolation by transformer)						
	$24 \mathrm{~V} \ldots$ (No galvanic isolation) (1)						
Supply tolerance	0.85 to 1.15 Un*						
Maximum power consumption	$\begin{aligned} & 3 \mathrm{VA} \sim \\ & 1 \mathrm{~W} \ldots \\ & \hline \end{aligned}$						
Frequency of measured signal	40 Hz to 500 Hz						
Adjustable hysteresis	5 to 50\% of the displayed threshold						
Threshold value range	10 to 100\% of the measurement						
Display accuracy of the preset threshold	$\pm 10 \%$						
Repetition accuracy with constant parameters	$\pm 0.1 \%$						
Voltage drift	$\pm 0.1 \%$ ($\pm 10 \%$ Un)						
Temperature drift	$\pm 0.02 \%$						
Delay on energisation T2	1 s to $20 \mathrm{~s} \pm 10 \%$						
Delay on upward crossing of threshold T1	0.1 s to $3 \mathrm{~s}, 0 \pm 10 \%$						
Delay on pick-up	500 ms						
Output relay	1 AgCdO changeover, $8 \mathrm{~A} \sim \max$						
Temperature Use	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$						
limits Stored	$-30^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$						
Weight	140 g						
Measurement range	E1-M	E2-M	E3M	E1-M	E2-M	E3M	E1-M
Inputs Sensitivity	2 to	10 to	50 to	0.1 to	0.5 to	1 to	10 to
	20 mA	100 mA	500 mA	1A	5A	10A	100 A
Input resistance	5Ω	$1 . \Omega$	0.2Ω	0.1Ω	0.02Ω	0.01Ω	20,

(1) The "negative" poles of the auxiliary power supply and the measurement circuit are connected inside the unit.

* Voltage limited to Un $+10 \%$ if other products are mounted adjacently on the same DIN rail.

ORDERING GUIDE

Type	Voltage	Part No
EIL.230A	230 Vac	84871005
EIL.110A	110 Vac	84871004
EIL.48A	48 Vac	84871003
EIL.24A	24 Vac	84871002
EIL.24D	24 VdC	84871001

EUL/EUH VOLTAGE CONTROL

- Monitors ac and dc voltages
- Measuring from 0.2 V to 600 V
$\mathrm{EUL}=0.2 \mathrm{~V}$ to 60 V ac/dc
$\mathrm{EUH}=10 \mathrm{~V}$ to 600 V ac/dc
- Selectable latching or non-latching output relay
- Under or over voltage selectable
- Separate dial for setting of threshold and hysteresis

OPERATING PRINCIPLE

Control of AC / DC voltage without memory
When the value of the controlled voltage, AC or DC, reaches the threshold Ue displayed on the front face, the output relay changes state at the end of a time delay T1, which can be set on the front face at between 0.1 and 3 s .
Once the voltage drops below 5 to 50% of the threshold (hysteresis), the output relay changes state again instantly. Changing the hysteresis on the front face does not therefore modify the value of the preset threshold.

Control of AC / DC voltage with memory

When the value of the controlled voltage, AC or DC, reaches the threshold Ue displayed on the front face, the output relay changes state at the end of a time delay T1 which can be set on the front face at between 0.1 and 3 s , and remains latched in this position.

(1) The "negative" poles of the auxiliary power supply and the measurement circuit are connected inside the unit.

* Voltage limited to Un $+10 \%$ if other products are mounted adjacently on the same DIN rail.

ORDERING GUIDE					
Type	Voltage	Part No	Type	Voltage	Part No
EUL.230A	230Vac	84872005	EUH.230A	230 Vac	84872010
EUL.120A	120 Vac	84872004	EUH.120A	120 Vac	84872009
EUL.24A	24 Vac	84872002	EUH.24A	24 Vac	84872007
EUL.24D	24 Vdc	84872001	EUH.24D	24 Vdc	84872006
			There is no galvanic isolation on 24 Vdc version. Terminals M and A 2 are connected internally...		

EUS/EUSF VOLTAGE CONTROL

- Monitors its own power supply voltage
- Measures from 7.5 to 275v (EUS)
- Measures from 20 to 260v (EUSF)
- Selectable latching or non-latching output relay
- LED indication of relay status and power on
- Separate dial for setting of threshold and hysteresis

OPERATING PRINCIPLE

EUS - The operating principle of the EUS control relays is identical to that for the EU control relays. Two operating modes are available :

- AC / DC voltage control without memory
- AC / DC voltage control with memory (see previous page).

EUSF - The EUSF window threshold relay controls an electrical voltage which acts as its own power supply (simplified wiring). When the value of the controlled voltage, AC or DC, goes outside the window, the output relay de-energises at the end of a time delay T1 which can be set on the front face at between 0.1 and 3 s .
It switches back on when the voltage returns within the window and stays between the upper and lower thresholds displayed by two potentiometers on the front face. Fixed hysteresis ensures bounce-free relay switching around the thresholds.
Note : Time delay T1 on crossing the upper and lower thresholds provides protection to transients, thus preventing spurious triggering of the output relay.

WIRING AND APPLICATIONS
EUS

A1-A2 : Power supply

EUSF

A1-A2 : Power supply

GENERAL SPECIFICATION

TYPES	EUS	EUSF
Supply voltage	$\begin{array}{\|l} \hline 7.5 \text { to } 18 \mathrm{~V} \ldots \\ 15 \text { to } 150 \mathrm{~V} \ldots \ldots \\ 50 \text { to } 275 \mathrm{~V} \ldots \\ \text { with protection } \sim \\ \text { against connection errors } \\ \hline \end{array}$	$\begin{aligned} & 20 \text { to } 80 \vee \ldots \ldots \\ & 65 \text { to } 260 \vee \ldots \\ & \text { with protection } \\ & \text { against connection } \\ & \text { errors } \end{aligned}$
Maximum power consumption	(1)	(1)
Frequency of measured signal	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Threshold Ue	$\begin{aligned} & \text { Direct adjustment } \\ & 9.6 \text { to } 15.6 \mathrm{~V} \ldots \\ & 20 \text { to } 80 \mathrm{~V} \ldots \\ & 65 \text { to } 260 \mathrm{~V} \ldots \sim \end{aligned}$	Direct adjustment 20 to 80 V … 65 to 260 V $\ldots \sim$
Hysteresis	Adjustable from 5 to 20%	Fixed 5\%
Display accuracy	$\pm 10 \%$ of the full scale	$\pm 10 \%$ of the full scale
Delay on upward crossing of threshold	0.1 to $3 \mathrm{~s} \pm 10 \%$	0.1 to $3 \mathrm{~s} \pm 10 \%$
Output relay	1 AgCdO changeover, 8 A a max	1 AgCdO changeover, 8 A a max
Operating temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

(1): 0.5 W temperature
$0,5 \mathrm{VA}$ at 80 and 260 ~
$1,5 \mathrm{~W}$ at $80 \ldots$ and $260 \ldots$

ORDERING GUIDE

Type
EUS.12D
EUS.20-80
EUS.90-270
EUSF.20-80
EUSF.90-270

Setting range (as displayed on dial)
9.6 to 15.6 Vdc

20 to $80 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ 65 to $260 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$
20 to 80 V ac/dc
65 to 260 V ac/dc

65-260V ac/dc

F3US/F3USN 3 PHASE UNDER/OVER VOLTAGE

- Window type under/over voltage of 3 phase network
- Powered from supply being measured
- Detects loss of phase
- LED indication of under or over voltage and relay status
- 2 changeover relay output
- 1 for over voltage
- 1 for under voltage
- Minimum and maximum threshold separately adjustable
- F3USN detects absence of neutral also

WIRING AND APPLICATIONS

F3US

F3USN

OPERATING PRINCIPLE

The two relays are energised when the measured voltages are between the minimum and maximum thresholds which can be separately adjusted via two potentiometers on the front face.
If one or more voltages goes outside the window, the relay corresponding to the fault de-energises following a delay which can be adjusted on the front face. The relays each have individual delays (0.1 to 10 sec .).
A hysteresis fixed at 3% ensures bounce-free relay switching when the voltage levels return to a value between the upper and lower thresholds. The unit is not affected by the phase sequence nor by harmonic distortion. A green LED indicates the presence of the power supply voltage.
Two yellow LEDs indicate when the upper and lower thresholds have been exceeded.
The LEDs go out when the voltages are within the set window.

GENERAL SPECIFICATION

GENERAL SPECIFICATION	
Supply voltage Un on terminals L1-L2	230 and $400 \mathrm{~V} \sim \pm 20 \%-50 / 60 \mathrm{~Hz}$
Power	4 VA maximum at Un
	8 VA maximum at Un $+20 \%$
Delay on pick-up	Approximately 3 s
Immunity from micro power cuts	10 ms
Insulation coordination	Installation category III, degree of pollution 2 conforming to IEC $664.1 /$ VDE $0110: 4 \mathrm{KV} / 2$

CONTROL CIRCUIT

Adjustment of upper threshold	102 to 115 \% of Un
Adjustment of lower threshold	85 to 98% of Un
Fault delay	0.1 to $10 \mathrm{sec}(0,+50 \%)$
Hysteresis	Approximately 3 \%
Display accuracy	$\pm 10 \%$
Repetition accuracy	upper threshold : 0.06 \%
	lower threshold : 0.09 \%
Temperature drift	± 0.05 \% / ${ }^{\circ} \mathrm{C}$
OUTPUT CIRCUIT	
Output	2 AgCdO changeovers
Breaking capacity	2000 VA 80 W
Maximum breaking current	$8 \mathrm{~A} \sim 18 \mathrm{C}$
Maximum breaking voltage	$250 \mathrm{~V} \sim$
Minimum breaking current	$100 \mathrm{~mA} \quad 100 \mathrm{~mA} \times$
Mechanical life	30×10^{6} operations
Electrical AC12	2000 VA - 10^{5} operations
life AC15	$\operatorname{Cos} \varphi=0.3-6000$ operations
DC 13	$\mathrm{L} / \mathrm{R}=300 \mathrm{~ms}-6000$ operations

GENERAL CHARACTERISTICS

Delay on crossing threshold	0.1 to 10 s (0 $\pm 50 \%$)
Display Power supply	Green LED
Overvoltage relay	Yellow LED
Undervoltage relay	Yellow LED
Class of protection	IEC 529 - Terminal IP 20, Casing IP 50
Casing material	Self-extinguishing
Mounting	Panel or DIN-rail mounted
Weight	310 g
Tightening capacity of terminals	$2 \times 1.5 \mathrm{~mm}^{2}$ with ferrule
	$2 \times 2.5 \mathrm{~mm}^{2}$ without ferrule
Tightening torque	0.6 Nm maximum (M3 screw / IEC 947-1)
Temperature Used	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (conforming to IEC 68.2.14)
limits Stored	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (conforming to IEC 68.2.1/2)
Relative humidity in accordance with IEC 68.2.30 Vibrations (IEC 68.2.6)	93 \% (+2 \% : -3 \%) no condensation
Amplitude	0.35 mm
Frequency	10 to 55 Hz
Insulation resistance (IEC 255.5)	$>10 \mathrm{M} \Omega$ at 500 V ...
Dielectric strength (IEC 255.5)	$>2.5 \mathrm{kV} / 1 \mathrm{~min} / 1 \mathrm{~mA} / 50 \mathrm{~Hz}$
Impulse voltage (IEC 255..5/664.1)	$5 \mathrm{kV} / \mathrm{Wave}$ 1.2-50 $\mu \mathrm{s}$

ORDERING GUIDE

Use F3USN for highly unbalanced systems.

Type

Measurement Range

340 Vac to 460 Vac
195 Vac to 264 Vac

Part No

84873201
84873211

HDI/HDU DIGITAL DISPLAY

- Monitors ac and dc currents (HDI), Voltages (HDU)
- HDI Measures from 2mA to 10A directly HDIL $=2 \mathrm{~mA}$ to 500 mA HDIH $=100 \mathrm{~mA}$ to 10 A
- HDU Measures from 0.2 V to 600 V HDUL $=0.2 \mathrm{~V}$ to 60 V ac/dc HDUH $=10 \mathrm{~V}$ to 600 V ac/dc
- Selectable latching or non-latching output relay
- Over or undercurrent measurement
- Hysteresis adjustable from 5-50\%

GENERAL SPECIFICATION	
POWER SUPPLY	
Supply voltage	$\begin{aligned} & 230,120,24 \mathrm{~V} \sim- \\ & 50 / 60 \mathrm{~Hz} 24 \mathrm{~V} \ldots \text { no galvanic isolation (1) } \end{aligned}$ protected against polarity reversal
Supply tolerance	0.85 to $1.10 \times$ Un
Maximum power consumption	$\begin{aligned} & 3 \mathrm{VA} \text { at } 230,120 \text { and } 24 \mathrm{~V} \sim \\ & 1 \mathrm{~W} \text { at } 24 \mathrm{~V} \text {... } \end{aligned}$
Immunity from micro power cuts	10 ms
Delay on pick-up	500 ms
Insulation coordination	Category III Degree of pollution 2 acc. to IEC 664-1, VDE 0110:4 KV/2
Output	1 AgCdo changeover relay - $5 \mathrm{~A}-250 \mathrm{~V}$
Minimum current	100 mA
Mechanical life	5×10^{6} operations
Maximum rate	360 operations / hr at full load
Electrical life	AC12: $1250 \mathrm{VA}-10^{5}$ operations
	AC15 : $\operatorname{Cos} \varphi=0.3-6000$ operations
	DC13: L/R = $300 \mathrm{~ms}-6000$ operations
Delay on threshold crossing	0.1 to $3 \mathrm{sec} \pm 10$ \% Relay status
Display on LCD	OVER or UNDER mode Memory function Type of signal (\sim or ...) Measurement overflow
Protection class	IEC 529, terminal block IP 20 panel-mounted IP 40, casing IP 50
Weight	$\sim 160 \mathrm{~g}$
Terminal capacity	$2 \times 1.5 \mathrm{~mm}^{2}$ with ferrule
	$2 \times 2.5 \mathrm{~mm}^{2}$ without ferrule
Temperature $\begin{array}{r}\text { Use } \\ \text { Stored }\end{array}$	$\begin{aligned} & -20 \text { to }+60^{\circ} \mathrm{C} \\ & -30 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Relative humidity	$93 \%(+2 \%-3 \%)$ without condensation

WIRING AND APPLICATIONS

INPUT CIRCUITS	E1-M	E2-M	E3-M
HDU - L	0.2-2 V	1-10 V	6.60V
Input resistance	2 k ,	$10 \mathrm{k} \Omega$	$60 \mathrm{k} \Omega$
Maximum permanent voltage at $20^{\circ} \mathrm{C}$	4 V	20 V	120 V
Peak overload $<1 \mathrm{~ms}$ at $20^{\circ} \mathrm{C}$	50 V	100 V	300 V
Maximum line voltage	250 VAC		
HDU - H	15-150 V	30-300 V	60-600 V
Input resistance	100 k ,	300 k ,	$650 \mathrm{k} \Omega$
Maximum permanent voltage at $20^{\circ} \mathrm{C}$	200 V	350 V	650 V
Peak overload $<50 \mu \mathrm{~s}$ at $20^{\circ} \mathrm{C}$	2 kV	2 kV	2 kV
Maximum line voltage	Mains 277 / 480 VAC		
HDI-L	2-20 mA	10.100 mA	50-500 mA
Input resistance	5Ω	1Ω	0.2Ω
Maximum permanent current at $20^{\circ} \mathrm{C}$	40 mA	200 mA	1 A
Peak overload $<1 \mathrm{~ms}$ at $20^{\circ} \mathrm{C}$	1 A	5 A	8 A
Maximum line voltage	Mains 277 / 480 VAC		
HDI - H	0.1-1 A	0.5-5 A	1-10 A
Input resistance	0.1Ω	0.02Ω	0.01Ω
Maximum permanent current at $20^{\circ} \mathrm{C}$	2 A	10 A	14 A
Peak overload $<1 \mathrm{~s}$ at $20^{\circ} \mathrm{C}$	17 A	20 A	50 A
Maximum line voltage	Mains 277 / 480 VAC		
HDI \& HDU			
Hysteresis	Adjustable from 5 to 50\% of threshold		
Signal frequency measured in ~	40 to 500 Hz		
Threshold display precision	$\pm 10 \%$		

OPERATING PRINCIPLE

Operating principle

These devices are designed to control an AC or DC electrical signal : voltage using HDUs, current using HDIs.
The threshold and hysteresis can be adjusted separately via two potentiometers on the front face. Before powering up the device, the operating mode should be selected using two dipswitches located under the device (with/without memory, over/under value). The mode is validated when power is applied to terminals

A1-A2.

The signal to be monitored is connected between terminals E1, E2, or E3 (depending on the range) and terminal M .

Operating diagrams

Control of voltage (HDU) or current (HDI) without memory When the value of the controlled signal, AC or DC , reaches the threshold set on the front face, the output relay opens (failsafe) at the end of time delay T. It closes immediately when the signal goes below (or above in under value mode) the threshold minus hysteresis (plus hysteresis in under value mode).
Control of voltage (HDU) or current (HDI) with memory
When the threshold is reached, the output relay opens at the end of time-out T and remains in that position.
To reset the relay, the supply must be cut.
This operating mode enables the detection of over or under values of short duration.

Notes
The threshold crossing time delay T , which can be adjusted on the front face from 0.1 to 3 sec , ensures immunity to transients and other interference, thus preventing spurious triggering of the output relay.
In "under value" mode, the absolute value of the hysteresis cannot be more than the maximum of the measurement range.

Programming - display

Normal mode
In this mode, the device displays the value of the measured signal, its form (a or c), the mode selected (OVER or UNDER), the memory function (ON or OFF), and the state of the output relay.
In the event of measurement overflow, the display indicates OVERFLOW (by three dashes on the screen, and the flashing symbol OVER). Parameter definition mode
If the user wishes to modify one of his three parameters (Threshold, Hysteresis, or Threshold delay), he simply has to set the corresponding potentiometer and the value of the modified parameter appears potentiometer and the value
automatically on the screen
After 2 seconds, the current value of the measured signal reappears on the screen : return to NORMAL mode.

Exception

In UNDER mode (underload), with hysteresis being always greater than the threshold, it is possible that it will exceed the maximum measurement range according to the settings (Threshold + Hysteresis > Max. Threshold). To alleviate this problem, when the user sets his hysteresis or his threshold in proportions which exceed the management capacity, the value of the hysteresis is corrected automatically so that it does not exceed the range maximum. In addition, the user is warned by the flashing symbol UNDER.
Parameter display mode
To review the parameters, press the pushbutton (VISU) several times in succession, which will initiate successive display of the settings. Keeping the pushbutton held down will enable you to scroll through the values.

Type	Voltage	Measuring Range	
HDIL.230A	230 Vac	2 mA to 500mA	84
HDIL.120A	120Vac	2 mA to 500mA	84
HDIL.24A	24Vac	2 mA to 500mA	84
HDIH.230A	230Vac	100 mA to 10A	84
HDIH.120A	120Vac	100 mA to 10A	84
HDIH.24A	24Vac	100 mA to 10A	84
24dc versions available please enquire			

ORDERING GUIDE

Part No	Type
84871305	HDUL.230A
84871304	HDUL.120A
84871302	HDUL.24A
84871310	HDUH.230A
84871309	HDUH.120A
84871307	HDUH.24A

Voltage	Measuring Range	Part No
230 Vac	0.2 v to $60 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$	84872305
120 Vac	0.2 v t $60 \mathrm{~V} \mathrm{a} / \mathrm{dc}$	84872304
24 Vac	$0.2 \mathrm{vo} 60 \mathrm{ac} / \mathrm{dc}$	84872302
230 Vac	10 v to $600 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$	84872310
120 Vac	10 v to $600 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$	84872309
24 Vac	10 v to $600 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$	84872307

For dimensions see page 95.

EWS/EWS2/EWS3 3 PHASE MONITOR

- Monitors
- phase sequence
- total loss of phase (no regenerated voltage allowed)
- Multi voltage (on EWS and EWS2)
- Powered from supply being measured
- LED indication of relay status
- 3 changeover relay outputs on EWS3

WIRING AND APPLICATIONS

EWS

EWS2

EWS3

OPERATING PRINCIPLE

EWS control relays monitor phase sequence and loss of one of the three phases. When the phase sequence is correct and none of the three phases is absent, the output relay(s) (EWS2, EWS3) are activated and the LED is lit.
If either fault - absence or phase sequence - exists, the output relay(s) de-energises at the end of time delay T2, and the LED goes off.

GENERAL SPECIFICATION

Frequency	50/60 Hz
Maximum consumption	5 VA at $200 \mathrm{~V} \sim$
	20 VA at $400 \mathrm{~V} \sim$
	25 VA at $460 \mathrm{~V} \sim$
Pick-up delay 11	maximum 200 ms
Turn-off delay T2	300 ms approximately in the event of disconnection of a phase
Output relay	AgCdO changeover
Breaking capacity	$2000 \mathrm{~V} \sim 80 \mathrm{~W}$...
Maximum breaking current	$8 \mathrm{~A} \sim 8 \mathrm{~A} .$.
Maximum breaking voltage	$250 \mathrm{~V} \sim 250 \mathrm{~V}$...
Electrical life	10^{5} operations at 2000 VA resistive
Mechanical life	2.10^{6} operations
Operating temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight	100 g EWS
	110 g EWS2
	135 g EWS3
Dielectric strength	$\begin{aligned} & \text { 2.5 KVA / } 1 \text { minute / } 1 \mathrm{~mA} / 50 \mathrm{~Hz} \\ & (\text { IEC } 255.5) \end{aligned}$

	ORDERING GUIDE			
Type	Output Relay	Measurement Range	Supply Voltage	Part No
EWS	1 changeover	$3 \times 200 \mathrm{Vac}$ to 500Vac	$3 \times 230 \mathrm{Vac}$ to 440Vac	84892290
EWS2	2 changeover	$3 \times 200 \mathrm{Vac}$ to 460Vac	$3 \times 230 \mathrm{Vac}$ to 400 Vac	84873001
EWS3	3 changeover	$3 \times 340 \mathrm{Vac}$ to 460Vac	$3 \times 380 \mathrm{Vac}$ to 400Vac	84873003
EWS3.230	3 changeover	$3 \times 200 \mathrm{Vac}$ to 265Vac	$3 \times 230 \mathrm{Vac}$	84873002

FW 3 PHASE MONITOR

- Monitors

- Phase sequence
- Loss of phase (with up to $\mathbf{7 0 \%}$ regenerated voltage)
- Under voltage up to -15\%
- Adjustable time delay on relay activation
- Measures $\mathbf{3}$ phase $\mathbf{2 3 0}$ or $\mathbf{4 0 0 V}$ systems
- Powered from supply being measured
- LED indication of power on and relay status
- 2 changeover relay outputs

GENERAL SPECIFICATION	
Power supply	Self-powered - L1-L2 terminals
Supply tolerance	0.7 to $1.2 \times$ Un
Frequency	$50 / 60 \mathrm{~Hz}$
Consumption	6 VA max.
Immunity from micro power cuts	10 ms
Delay on pick-up	500 ms
Insulation coordination	Category III Degree of pollution 2 acc. to IEC 664-1, VDE 0110: $4 \mathrm{KV} / 2$
Input circuit	
Measurement input resistance	$1 \mathrm{~K} \Omega \times \mathrm{Un}$
Regeneration rate	max 70% of preset threshold
Under-voltage detection (symmetrical drop)	~ 15 \% of pres. threshold
Threshold display accuracy	± 10 \%
Output relay	2 AgCdO changeover
Breaking capacity	2000 VA a - 80 Wc
Maximum breaking current	8 A ac
Minimum breaking current	100 mA ac
Maximum breaking voltage	250 V ac
Electrical life	250 V ac AC12: 2000 VA 10^{5} operations AC15: $\cos \varphi=0.3-$ 6000 operations DC13 : L/R $=300 \mathrm{~ms}$ 6000 operations
Mechanical life	5×10^{5} operations
Maximum rate (at full load)	360 operations / hr
Time delay in the event of a fault	0.2 to $10 \mathrm{~s}(0$ to $+50 \%)$
Display	Voltage presence green LED
	Relay yellow LED
Casing	Self-extinguishing
Terminals	Without ferrule $2 \times 2.5 \mathrm{~mm} 2$
	With ferrule $2 \times 1.5 \mathrm{~mm} 2$
	Tightening $\quad 0.6 \mathrm{mN}$ max
Temperature Use	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
limits Stored	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative humidity	93% without condensation
Vibration	Amplitude 0.35 mm
	Frequency $\quad 10-55 \mathrm{~Hz}$
Insulation resistance	$>100 \mathrm{M} \Omega$ at 500 V
Dielectric strength	$\begin{aligned} & 3 \mathrm{kV} \text { at } 1 \mathrm{~mA} \text { for } \\ & 1 \text { minute / } 50 \mathrm{~Hz} \end{aligned}$
Approvals	UL and (c) UL (File E 87 133)
Weight	$\sim 350 \mathrm{~g}$

WIRING AND APPLICATIONS

Terminal Identification

L1 - L2 - L3: 3-phase network being monitored

12-13-14: Output relay
L1 - L2 - L3: Output relay

Note:

Time delay T is not operational during loss of L 1 and L 2 .
It operates during loss of L3, phase inversion or voltage drop. Its role is to prevent spurious triggering of output relays during transient states, notably during motor starting.

FW. $230 \quad 3 \times 230 \mathrm{Vac}$
Other voltage ranges available please enquire.

WIRING AND APPLICATIONS
FWA

Terminal identification
Terminals L1-L2-L3 :3 phase network being monitored 11-12-14 :Output relay

OPERATING PRINCIPLE

The device is self-powered by two phases.
A green LED indicates the presence of the power supply voltage. When the phase sequence is correct and the asymmetry rate is lower than the threshold displayed on the front face, the output relay is energised, indicated by a yellow LED.
The output relay de-energises after a delay T1, adjustable from the front face, if one of the following faults is present:

- incorrect phase sequence,
- absence of L3,
- asymmetry rate higher than the threshold displayed. This imbalance represents the increase or decrease in the voltage of two phases compared to the voltage of a different phase.
The output relay de-energises instantaneously in the event of a break on L1 or L2.
A hysteresis fixed at approximately 10% ensures bounce-free relay switching around the threshold.
As differential measurement is used, the FWA does not react to symmetrical increases or decreases in the network.

Note:

T2 : Delay on power-down.
T3 : Delay on power-up.

GENERAL SPECIFICATION

AUXILIARY POWER SUPPLY	
Auxiliary voltage (self-powered from terminals L1 and L2)	$230 \mathrm{~V} \sim, 400 \mathrm{~V} \sim$
Operating range	0.8 • $1.2 \times$ Un
Frequency	50 and 60 Hz
Consumption	4 VA max. at Un/8 VA at Un +20\%
Immunity from micro power cuts	10 ms
Delay on power-up T3	1 s max.
Delay on power-down T2	300 ms max.
Insulation coordination	Installation category III Degree of pollution 2 conforming to IEC 664-1, VDE $0110: 4 \mathrm{KV} / 2$
INPUT CIRCUIT	
3-phase Nominal voltage	$3 \times 230 \mathrm{~V} \sim$
network Operating range	185 to $275 \mathrm{~V} \sim \quad-320$ to $480 \mathrm{~V} \sim$
Frequency (can be altered via switch underneath device)	50 and 60 Hz
Regeneration rate	Maximum 95 \% Un
Adjustment of asymmetry rate	5 to 20 \% Un
Threshold display accuracy (in accordance with VDE 0435)	± 20 \% at full scale
Temperature drift	0.1 \% / ${ }^{\circ} \mathrm{C}$
Repetition accuracy	$\pm 1 \%$ at full scale
Fixed hysteresis	10 \% of displayed threshold
OUTPUT CIRCUIT	
Output	1 volt-free changeover relay
Type of contacts	AgCd0
Breaking capacity	2000 VA 80 W ...
Maximum breaking current	$8 \mathrm{~V} \sim \ldots$
Maximum breaking voltage	$250 \mathrm{~V} \sim \ldots$
Minimum breaking current	$100 \mathrm{~mA} \sim \ldots$
Electrical AC12	2000 VA - 105 operations
life AC15	$\operatorname{Cos} \varphi=0.3-6000$ operations
DC13	$\mathrm{L} / \mathrm{R}=300 \mathrm{~ms}-6000$ operations
Maximum rate	360 operations / hour at full load
Mechanical life	5×10^{6} operations
OTHER CHARACTERISTICS D	
Delay in the event of fault (T1)	0.5 to $10 \mathrm{~s}(-0,+60 \%)$
Display Power supply	Green LED
Relay	Yellow LED
Class of protection (IEC 529)	Term. block : IP 20 - Casing : IP 30
Casing material	Self-extinguishing
Mounting	Panel or DIN-rail mounted
Weight	360 g
Tightening capacity of terminals	$2 \times 1.5 \mathrm{~mm} 2$ with ferrule
	$2 \times 2.5 \mathrm{~mm} 2$ without ferrule
Temperature Used	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (conforming to IEC 68.2.14)
limits Stored	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (conforming to IEC 68.2.1/2)
Vibrations Amplitude	0.35 mm
(IEC 68.2.6) Frequency	10 to 55 Hz
Insulation resistance (IEC 255.5)	$>100 \mathrm{~m} \Omega$ at $500 \mathrm{~V} \ldots$
Dielectric strength (IEC 255.5)	$2.5 \mathrm{KV} / 1 \mathrm{~min} / 1 \mathrm{~mA} / 50 \mathrm{~Hz}$
Impulse voltage (IEC 255.5 / 664.1)	$5 \mathrm{KV} / \mathrm{Wave} \mathrm{1.2-50} \mu \mathrm{~s}$

ORDERING GUIDE

ETM/ETM2 MOTOR TEMPERATURE PROTECTION

- Monitors temperature of PTC thermistor that is built in to motor
- Push button test facility (ETM2 only)
- Sensor open/short circuit detection
- Latched output relay with manual reset or automatic reset (ETM2) (automatic reset only on ETM)
- LED indication of power on and relay status (ETM2 only)
- 1 N/O (ETM) or 1 changeover (ETM2) relay output

WIRING AND APPLICATIONS

ETM relay

Terminal identification

A1-A2 : Supply Voltage 11-14 : Output relay External: PTC probe

OPERATING PRINCIPLE

Control relay ETM \& ETM2 is used in combination with PTC thermistor probes (not supplied) for thermal protection of machines (motors, alternators, transformers, etc). The probes are placed at critical points on the equipment to be protected (normally inserted into the stator windings of motors). The resistance of the PTC probe has a positive temperature coefficient. As soon as the nominal trip temperature of the probe is exceeded, the resistance of the probe increases rapidly. Protection relay ETM \& ETM2 detects this and opens the power supply circuit of the protected equipment (eg motor) and the yellow fault indicator LED lights up (version ETM2).

Test button

The ETM 2 has a TEST button which can be used to simulate a thermal overload in order to test the service condition of the relay.

Tripping

The relay drops out as soon as the protected equipment is subjected to a thermal overload, shortcircuit or break in the probe measuring circuit.
Reset WITHOUT fault latching
(Y1 and Y2 not connected for ETM2)
Control relay ETM \& ETM2 is automatically reset as soon as the temperature drops below the trip threshold (the yellow fault indicator LED goes out).

Reset WITH fault latching (only for ETM2)
(Y 1 and Y 2 connected)
The relay is reset either using the RESET pushbutton on the front face or by opening the externa contact (remote reset), or by cutting the auxiliary power supply (terminals A1-A2).
If the auxiliary power is cut for a period of time greater than the reset time (500 ms), the relay is reactivated if the probe detects a normal temperature when the power supply voltage is restored

Early warning of tripping
If the equipment being protected has another PTC probe with a lower nominal trip temperature, a second ETM \& ETM2 relay can be used to give early warning of tripping and thus prevent breaks in operation.

ETM 2 relay

GENERAL SPECIFICATION

Supply voltage Un	230,120 and $24 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ Galvanic isolation by transformer 24 VDC no galvanic isolation
Supply tolerance	0.85 to 1.10 Un
Power	nominal
	3 VA
maximum	5 VA
Delay on pick-up	10 ms
Insulation coordination	500 ms

Max. resistance of cold probes 1

Trip threshold	31
Reset threshold	1650
Short-circuit detection	0
Measurement	

Measurement voltage	$\leq 2.5 \mathrm{~V}$ (acc. to IEC 34.11)
Repetition accuracy	$\pm 0.5 \%$ with constant parameters
Temperature-dependent drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$

Temperature-dependent drift
± 0

OUTPUT CIRCUIT

Output	1
	Co
Breaking capacity	20
Max. breaking current	8
Max. breaking voltage	25
Min. breaking current	10
Maximum rate	36
Mechanicallife	5

Electrical life
x 106 operations
AC12: 2000 VA - 105 perations
AC15 : $\operatorname{Cos} \varphi=0.3-6000$ operations
DC13: L/R $=300 \mathrm{~ms}-6000$ operations
GENERAL CHARACTERISTICS

Reset time	$\leq 500 \mathrm{~ms}$
Response time	$\leq 50 \mathrm{~ms}$

Response time		$\leq 50 \mathrm{~ms}$
Display	Power supply	Green LED
on ETM2	Relay	Yellow LED
Protection class		IEC 529, Terminal block IP20 Casing IP50
Casing material		Self-extinguishing
Weight		$\sim 145 \mathrm{~g}$
Terminal capacity		$2 \times 1.5 \mathrm{~mm}^{2}$ with ferrule
		$2 \times 2.5 \mathrm{~mm}^{2}$ without ferrule
Temperature	Use	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (acc. to IEC 68.1.14)
limits	Stored	$-30^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ (acc. to IEC 68.1.1/2)
Relative humidity		93\% (+2\% ; -3\%) no condensation

		ORDERING GUIDE	
	Supply Voltage	Part No	Type
Type	230Vac	84874024	ETM.230
ETM2.230	120Vac	84874023	ETM.120
ETM2.120	24Vac/dc	84874025	ETM.24
ETM2.24		For dimensions see page 95	

For dimensions see page 95.

FRL UNDERSPEED CONTROL

- Detection of underspeed or stopping
- Signal input by voltage, contact or sensor (3 wire or Namur)
- Selectable latching or non-latching output relay
- LED indication of relay status and power on
- Time between input pulses adjustable up to $\mathbf{1 0}$ minutes
- Start up delay adjustable up to 30s

WIRING AND APPLICATIONS

OPERATING PRINCIPLE

The FRL control relay can be used to solve underspeed problems : conveyor belts, conveyors, etc where the crossing of a low speed threshold should trigger an alarm. Speed data is collected via a sensor such as a three-wire output proximity sensor, a NAMUR sensor or by volt-free contact or voltage.
On power-up, to allow the process which is being controlled to reach its operating speed, control is inhibited for a time of between 0.3 and 30 sec , which can be adjusted on the front face.
If starting requires an inhibition time above 30 seconds, external contact S 2 must be closed during starting to inhibit the FRL (during this time the yellow LED flashes), then opened when the nominal speed has been reached.
On each cycle of the process being controlled, the sensor sends a pulse to the FRL. Each of these pulses resets the internal time delay of the FRL.
If the time between two pulses is less than the value set on the FRL, the delay is reset on each pulse and the output relay remains closed.
If the speed of the process decreases, the time between pulses increases. When the time between two pulses is greater than the value set on the FRL, the controlled process is in underspeed mode, the output relay of the FRL changes state (opens).
The output relay closes again when the speed of the controlled process exceeds the preset value plus the hysteresis (5% of the value displayed).
If "memory" mode is activated, the relay remains open when an underspeed fault is detected. In this case, the output relay can only close again after a manual reset has been performed by closing external contact S 2 .
A yellow LED indicates the state of the relay.
A green LED indicates the presence of the power supply.

GENERAL SPECIFICATION

Supply voltage Un	$24,120,230 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ Galvanic isolation via transformer 24 V ... without galvanic isolation
Supply tolerance	0.85 to 1.15 Un
Maximum power Version ~	3.5 VA max. at Un and 5 VA at Un + 15 \%
consumption Version \ldots	1 W max. at Un and 1.5 W at Un +15 \%
Immunity to micro power cuts	10 ms
Insulation coordination	Category III, degree of pollution 2 conforming to IEC 664.1/VDE 0110 : 4 KV/2
CONTROL / INPUT CIRCUIT	
Input circuit 3-wire sensors	24 V PNP (50 mA max.)
NAMUR sensor	8.2 V on $1 \mathrm{k} \Omega$
Contact	Volt-free
Voltage input	30 V max.
Input resistance	$16 \mathrm{k} \Omega$ except for NAMUR $1 \mathrm{k} \Omega$
High state	Min. 4.5 V , max. 30 V
Low state	Min. 0 V, max. 1 V
Breaking frequency	200 Hz
Minimum pulse time	5 ms
Minimum time between pulses	5 ms
Selection of delay and memory	8-position switch on front face
No memory	0.1 to $1 \mathrm{~s}, 1$ to $10 \mathrm{~s}, 0.1$ to $1 \mathrm{~min}, 1$ to 10 min
With memory	0.1 to $1 \mathrm{~s}, 1$ to $10 \mathrm{~s}, 0.1$ to $1 \mathrm{~min}, 1$ to 10 min
Hysteresis	5 \% of threshold displayed
Display accuracy	10 \% of full scale (@ $25^{\circ} \mathrm{C}$)
Repetition accuracy	± 0.5 \% with constant parameters
Temperature-dependent drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Voltage-dependent drift	$\pm 1 \% / \mathrm{V}$
Reset time	200 ms minimum
Reset time S2	100 ms minimum
Inhibition delay	0.3 to $30 \mathrm{~s} \pm 10$ \%
OUTPUT	
Output	1 AgCdO changeover
Breaking capacity	2000 VA 80 W
Maximum breaking current	$8 \mathrm{~A} \sim \quad 8 \mathrm{~A} \ldots$
Minimum breaking current	$100 \mathrm{~mA} \sim 100 \mathrm{~mA} \ldots$
Maximum breaking voltage	$100 \mathrm{~V} \sim$
Mechanical life	5×10^{6} operations
Electrical life AC12	2000 VA - 10^{5} operations
AC15	$\operatorname{Cos} \varphi=0.3-6000$ operations
DC13	L/R $=300 \mathrm{~ms}-6000$ operations
Maximum rate	360 operations / hour at full load
GENERAL CHARACTERISTICS	
Casing material Terminal capacity	Self-extinguishing
	$2 \times 1.5 \mathrm{~mm}^{2}$ with ferrule
	$2 \times 2.5 \mathrm{~mm}^{2}$ without ferrule
Temperature Use	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (conforming to IEC 68.1.14)
limits Stored	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (conforming to IEC 68.1.1/2)
Relative humidity	93% (+2 \% ; -3 \%) without condensation
Weight	255 g approximately

Type
FRL.24A
FRL.24D

Voltage
24 Vac
24 Vdc

Part No
84874301
84874300

FFP MOTOR LOAD CONTROL (COSINE φ)

- Monitors phase shift between current and voltage ($\operatorname{cosine} \varphi$)
- For monitoring of motors with load variations
- Independent setting of min and max thresholds
- Thresholds adjustable between 0 and 0.99
- Up to 20s adjustable power on delay to allow for startup surges
- Normal or reverse relay action selectable
- 2 changeover relay outputs

WIRING AND APPLICATIONS

Operation on 3-phase

network 1<10 A ~

Operation on 3-phase network $1>10$ A ~

Operation on single phase network 230 V ~

Use of terminals

L1-L2-L3: Network to be monitered
E : Current read output
11-12-14: Low threshold output relay (R1)
21-22-24: High threshold output relay (R2)

OPERATING PRINCIPLE

The FFP control relay is used for motor protection. The variation in the power factor (current / voltage phase-shift or cosine φ is related to the variation in the mechanical load of the motor. The FFP control relay monitors the power factor, and therefore the mechanical load, and ensures that it stays between two defined, adjustable limits.
A green LED indicates presence of the power supply.
Two yellow LEDs display the state of the output relays.
On power-up, both output relays are closed for the duration of the inhibit time (T2 adjustable between 0.5 and 20 seconds).
If the value of the power factor is between the two threshold values set, both relays are closed.
If the power factor exceeds the maximum threshold value set by the user, the high threshold relay de-energises after a delay T1 (adjustable between 0.3 and 3 seconds). During this delay, the green LED flashes (1 Hz). The relay closes again when the measured value drops below the threshold less the hysteresis.
If the power factor drops below the minimum threshold value set by the user, the low threshold relay de-energises after a delay (T1 adjustable between 0.3 and 3 seconds). During this delay, the green LED flashes. The relay closes again when the measured value is $(1 \mathrm{~Hz})$ above the threshold plus the hysteresis.
If the value of the high threshold is set as less than or equal to the low threshold value, the green LED flashes quickly (2 Hz).

GENERAL SPECIFICATION	
Supply voltage Un	230, 400, 440, 480, $575 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ Self-powered via L1 and L2
Operating range	0.85 to 1.15 Un
Power nominal	2 VA at Un
maximum	3 VA at Un +15\%
Immunity from micro power cuts	10 ms
Insulation coordination	Category III, degree of pollution 2 conforming to IEC 664.1 / VDE 0110 : $4 \mathrm{KV} / 2$
INPUT / CONTROL CIRCUIT	
Threshold display	0,1 to 0.99
Voltage circuit input resistance	approx. 2 k (Un)
Current measurement	by internal shunt via 2 terminals
Current range	0.5 to 10 A
Input resistance	20 m ת
Maximum continuous current	14 A @ $20^{\circ} \mathrm{C}$)
Peak overload	$50 \mathrm{~A}\langle 1 \mathrm{sec})\left(020^{\circ} \mathrm{C}\right)$
Delays on power-up (T2)	0.5 to $20 \mathrm{~s}- \pm 20 \%$ of full scale
on threshold crossing (T1)	0.3 to $3 \mathrm{~s}- \pm 20 \%$ of full scale
Frequency	$50 \ldots 60 \mathrm{~Hz}$
Hysteresis	$\begin{aligned} & 10 \% \text { fixed for } \operatorname{Cos} \varphi \geq 0.4 \\ & 10 \%<H y s t .<30 \% \text { for } \cos \varphi<0.4 \end{aligned}$
Display accuracy	$\pm 10 \%$ of full scale
Repeat accuracy	$\pm 0.8 \%$ with constant parameters
Temperature drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
OUTPUT CIRCUIT	
Output	2 AgCdO changeovers
Breaking capacity	2000 VA 80 W
Maximum breaking current	8 A ~ 8 A ...
Minimum breaking current	$100 \mathrm{~mA} \sim 100 \mathrm{~mA}$...
Maximum breaking voltage	250 V ~ 250 V ...
Mechanicallife	30×10^{6} operations
Electrical life \quad AC12	200 VA - 105 operations
AC15	$\operatorname{Cos} \varphi=0.3-6000$ operations
DC13	L/R $=300 \mathrm{~ms}-6000$ operations
GENERAL CHARACTERISTICS	
Casing material	Self-extinguishing
Terminal capacity	$2 \times 1.5 \mathrm{~mm}^{2}$ with ferrule
	$2 \times 2.5 \mathrm{~mm}^{2}$ without ferrule
Temperature Use	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (conforming to IEC 68.1 .14)
limits Stored	$-30^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ (conforming to IEC 68.1.1/2)
Relative humidity	93\% (+2\%;-3\%) no condensation
Weight	360 g approximately

ORDERING GUIDE

FFP. 400
FFP. 230

Voltage
3×400 Vac
$3 \times 230 \mathrm{Vac}$
0.5 to 10 A

DIMENSIONS FOR CONTROL RELAYS

HDI - HDU

MCI

F3US - F3USN - FFP - FRL - FW - FWA - FN - F2N

EWS - EWS2 - EWS3

EU - EI-EIT - EUS - EUSF - ETM - ETM2-EN

Current transformerfor EIT - Ref. 26852304

